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Exercice 1. La bonne réponse est la quatrième (il s’agit d’une application directe de la
définition).

Exercice 2. On remarque que C1 = C2 +C3, si Ci est la i-ème colonne de A. De manière

équivalente. Le vecteur

 1
−1
−1

 est dans le noyau de S pour tous α, β, γ ; la matrice S

n’est donc jamais inversible.
Si on ne voit pas ce résultat, en écrivant pour simplicité

a1 = cos2(α) a2 = sin2(α)
b1 = cos2(β) b2 = sin2(β)
c1 = cos2(γ) c2 = sin2(γ)

on calcule (en développant sur la 1ère ligne)

det

1 cos2(α) sin2(α)
1 cos2(β) sin2(β)
1 cos2(γ) sin2(γ)

 =

∣∣∣∣∣∣
1 a1 a2
1 b1 b2
1 c1 c2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a1 a2
0 b1 − a1 b2 − a2
0 c1 − a1 c2 − a2

∣∣∣∣∣∣
=

∣∣∣∣b1 − a1 b2 − a2
c1 − a1 c2 − a2

∣∣∣∣ = (b1 − a1)(c2 − a2) − (b2 − a2)(c1 − a1)

= b1c2 − a2b1 − a1c2 +���a1a2 − b2c1 + b2a1 + a2c1 −���a1a2

= a1b2 − a2b1 − (a1c2 − a2c1) + b1c2 − b2c1.

Comme cos2 + sin2 = 1, on obtient 
a2 = 1 − a1

b2 = 1 − b1

c2 = 1 − c1

Par conséquent, on obtient

a1b2 − a2b1 = a1(1 − b1) − (1 − a1)b1 = a1 − b1,

ce qui montre que

a1b2 − a2b1 − (a1c2 − a2c1) + b1c2 − b2c1 = a1 − b1 − (a1 − c1) + b1 − c1 = 0.

Par conséquent, la matrice en question n’est jamais inversible.
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Exercice 3. La matrice A =

0 1 0
0 0 1
0 0 0

 possède la propriété voulue.

Remarque 1. Une matrice A telle Am = 0 et Am−1 ̸= 0 s’appelle une matrice nilpotente
d’ordre m. Ces matrices jouent un rôle important dans l’étude de la structure des matrices.

Exercice 4. Rappelons que les opérations élémentaires ont l’effet suivant sur le déter-
minant :

Type I : Si on échange deux lignes, le déterminant change de signe.
Type II : Si on multiplie une ligne par un scalaire λ ̸= 0, le déterminant est multiplié

par λ.
Type III : Si on ajoute à une ligne un multiple scalaire d’une autre, le déterminant ne

change pas.

On se souvient d’autre part que pour une matrice triangulaire, le déterminant est égal
au produit des coefficients diagonaux. On obtient donc

det(A) =

∣∣∣∣∣∣∣∣
1 1 1 λ
1 1 λ 1
1 λ 1 1
λ 1 1 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 1 λ
0 0 λ−1 1−λ
0 λ−1 0 1−λ
0 1−λ 1−λ 1−λ2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 λ
0 λ−1 0 1−λ
0 0 λ−1 1−λ
0 1−λ 1−λ 1−λ2

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
1 1 1 λ
0 λ−1 0 1−λ
0 0 λ−1 1−λ
0 0 1−λ 2−λ−λ2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 λ
0 λ−1 0 1−λ
0 0 λ−1 1−λ
0 0 0 3−2λ−λ2

∣∣∣∣∣∣∣∣
= −(λ − 1)2(3−2λ−λ2)

Exercice 5. Soit A ∈ GL(n,K), alors

A⊤(A−1)⊤ = (A−1A)⊤ = I⊤ = I.

Ce qui prouve que (A⊤)−1 = (A−1)⊤.
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Exercice 6. La bonne réponse est la 1ère réponse.
En effet, le polynôme caractéristique est donné par

χA(λ) = det
(

−λ 2
−1 3 − λ

)
= λ(λ − 3) + 2 = λ2 − 3λ + 2 = (λ − 1)(λ − 2).

Le polynôme caractéristique étant scindé à racines simples, A est diagonalisable. Soit
P ∈ GL(2,R) telle que

A = P

(
1 0
0 2

)
P −1.

Si

P =
(

a b
c d

)
,

L’équation précédente peut se réécrire AP = PDiag(1, 2), et on obtient le système sui-
vant : (

2c 2d
−a + 3c −b + 3d

)
=

(
a 2b
c 2d

)
.

Le système se réduit donc aux deux équations{
a = 2c

b = d

On peut donc prendre a = b = d = 1, ce qui donne c = 2 et

P =
(

2 1
1 1

)
qui est un élément de SL(2,Z). En se souvenant (ou en la calculant à nouveau) de la
formule (

a b
c d

)−1

= 1
ad − bc

(
d −b

−c d

)
,

on obtient donc

P −1 =
(

1 −1
−1 2

)
.

Par conséquent, on a

A10 = P

(
1 0
0 210

)
P −1 =

(
2 − 210 −2 + 211

1 − 210 −1 + 211

)
=

(
−1022 2046
−1023 2047

)
.
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Exercice 7.
1) Soit w0 ∈ V non nul. Pour tout entier k ∈ N, on définit le vecteur wk = fk(w0). Si
l’affirmation (a) n’était pas vérifiée, alors la famille E = {wk}k∈N ⊂ V serait une famille
libre infinie, contredisant l’hypothèse que V est de dimension finie.

Détaillons l’argument : Notons Ek = {w0, . . . , wk} ⊂ V . Nous affirmons que si
dim(V ) = n < ∞, alors, la famille En est liée. Pour voir cela, distinguons deux cas :

1. Soit tous les éléments de cette famille sont différents. Ainsi

Card(En) = n + 1 > dim(V ),

donc la famille En est liée.
2. Soit il existe des entiers k < k′ ⩽ n tels que wk = wk′ , donc les vecteurs w0, . . . , wn

sont linéairement dépendants (c’est-à-dire la famille En est liée).
On a montré que l’ensemble {k ∈ N | Ek est liée} est un sous-ensemble non vide de N,
il admet donc un plus petit élément, que l’on note m. Comme E0 = {w0} est libre, on a
m ⩾ 1. Par minimalité de m, la famille Em−1 est libre. Comme Em est liée, on en déduit
que wm est combinaison linéaire de w0, . . . , wm−1.

2) On montre que f(W ) ⊂ W . Comme Em−1 engendre W , il suffit de montrer que
f(wk) ∈ W pour tout 0 ⩽ k ⩽ m−1. Le résultat est clair si k < m−1 ; pour k = m−1, ceci
est une conséquence du fait que f(wm−1) = wm est combinaison linéaire de w0, . . . , wm−1.

3) On a observé au point (a) que Em−1 = {w0, . . . , wm−1} est libre. Comme W =
Vec(Em−1), on déduit que Em−1 est bien une base de W .

4) Soit B la base ordonnée (w0, . . . , wm−1), obtenue à partir de Em−1. Par le point
précédent, on peut considérer l’endormorphisme :

f |W : W → W.

On cherche sa matrice A = MB,B(f |W ) dans la base B. Chaque colonne de A est donnée
par l’image du vecteur de base correspondant, exprimé dans la base B. Pour 0 ⩽ k < m−1
on a f(wk) = wk+1 et pour k = m − 1 on a

f(wm−1) =
m−1∑
i=0

aiwi.

Par conséquent, on obtient
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f(w0) = 0 · w0 + 1 · w1 + 0 · w2 + · · · + 0 · wm−1

f(w1) = 0 · w0 + 0 · w1 + 1 · w2 + · · · + 0 · wm−1
...

f(wm−2) = 0 · w0 + 0 · w1 + 0 · w2 + · · · + 1 · wm−1

f(wm−1) = a0 · w0 + a1 · w1 + · · · + am−1 · wm−1

On obtient donc

A = MB,B(f |W ) =



0 0 0 . . . 0 0 a0
1 0 0 . . . 0 0 a1
0 1 0 . . . 0 0 a2

0 0 . . . . . . 0 ...
0 0 . . . . . . . . . 0 ...
0 0 . . . 1 0 ...
0 0 . . . . . . 0 1 am−1


.

Exercice 8. 1) Les matrices A, B ∈ Mn(K) sont semblables si il existe une matrice
inversible P ∈ GL(n,K) telle que B = P −1AP .
2) Supposons que B = P −1AP , alors B2 = P −1A2P car

B2 = (P −1AP )2 = (P −1AP )(P −1AP ) = P −1A(PP −1)AP = P −1A(In)AP = P −1A2P.

3) On rappelle que si X et Y sont deux matrices de même taille, alors Tr(XY ) = Tr(Y X)
(cette propriété est d’ailleurs facile à vérifier par un calcul direct des deux traces). Sup-
posons que B = P −1AP , alors

Tr(B) = Tr(P −1AP ) = Tr(APP −1) = Tr(A).

4) A est semblable à In si et seulement si A = In.
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5) Voici deux façons de prouver que deux matrices semblables ont les mêmes valeurs
propres.

1. On peut partir de la définition des valeurs propres. λ ∈ K est valeur propre de
A si et seulement si il existe un vecteur non nul X ∈ Kn tel que AX = λX. Par
conséquent si B = P −1AP nous avons

BP −1X = P −1APP −1X = P −1AX = λP −1X.

2. En utilisant le polynôme caractéristique. On a vu au cours que les valeurs propres
de A sont exactement les racines de χA(t), et on a aussi vu que deux matrices
semblables ont le même polynôme caractéristique (Proposition 8.5.3 du polycopié
1).

6) L’argument ci-dessus montre que si X est vecteur propre de A, alors Y = P −1X est
vecteur propre de B = P −1AP . Donc en général les deux matrices n’ont pas les mêmes
vecteurs propres.

Exercice 9. La structure d’espace vectoriel sur V ×W est la structure de produit direct,
qui est définie par

— Si (x1, y1), (x2, y2) ∈ V × W, alors (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),
— Si (x, y) ∈ V × W et λ ∈ K, alors λ · (x, y) = (λx, λy).

Supposons d’abord que f est une application linéaire, on doit alors prouver que Γ ⊂
V × W est un sous-espace vectoriel. On vérifie les trois affirmations habituelles :

1. Γ ̸= ∅.
En effet, on a f(0V ) = 0W , donc l’élément (0V , 0W ) appartient à Γ (c’est le 0

de l’espace vectoriel V × W .)
2. Si (x1, y1), (x2, y2) ∈ Γ, alors (x1, y1) + (x2, y2) ∈ Γ.

En effet (xi, yi) ∈ Γ signifie que yi = f(xi), donc

(x1, y1)+(x2, y2) = (x1+x2, y1+y2) = (x1+x2, f(x1)+f(x2)) = (x1+x2, f(x1+x2)) ∈ Γ

3. Si (x, y) ∈ Γ, λ ∈ K, alors λ · (x, y) ∈ Γ, car on a les implications

(x, y) ∈ Γ ⇒ y = f(x) ⇒ λy = f(λx) ⇒ λ(x, y) = (λx, λy) ∈ Γ

Pour prouver la réciproque, on suppose que Γ est un sous-espace vectoriel de V × W
et on doit en déduire que f est une application linéaire : On a pour tout x1, x2 ∈ V et
λ1, λ2 ∈ K

λ1(x1, f(x1)) + λ2(x2, f(x2)) = (λ1x1 + λ2x2, λ1f(x1) + λ2f(x2)) ∈ Γ
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car Γ est un sous-espace vectoriel de V × W ; ce que implique que

f(λ1x1 + λ2x2) = λ1f(x1) + λ2f(x2),

par définition de Γ.

Exercice 10. Suivons la suggestion. On suppose donc que Ker(f 2) = Ker(f) et on veut
montrer que Ker(f 3) = Ker(f).

Il est clair que Ker(f) ⊂ Ker(f 3), car si f(x) = 0, alors f 3(x) = f 2(f(x)) = f 2(0) = 0.

Pour montrer l’inclusion inverse, on suppose que x ∈ Ker(f 3). Alors f 2(f(x)) =
f 3(x) = 0, ce qui signifie que f(x) ∈ Ker(f 2). Mais on suppose que Ker(f 2) = Ker(f),
donc f(x) ∈ Ker(f).

Or cela signifie que f 2(x) = f(f(x)) = 0. Donc x ∈ Ker(f 2) = Ker(f). La conclusion
est que si x ∈ Ker(f 3), alors x ∈ Ker(f), ce qui prouve que Ker(f 3) ⊂ Ker(f).

La preuve générale est virtuellement identique. Supposons que Ker(fm+1) = Ker(fm)
et soit x ∈ Ker(fm+2) arbitraire. Alors fm+2(x) = fm+1(f(x)) = 0. Donc f(x) ∈
Ker(fm+1) = Ker(fm), par conséquent fm+1(x) = fm(f(x)) = 0. Cela montre que
x ∈ Ker(fm+1) = Ker(fm). L’argument montre ainsi que Ker(fm+2) ⊂ Ker(fm). L’inclu-
sion inverse Ker(fm) ⊂ Ker(fm+2) est évidente.

Le même argument montre que Ker(fm+3) = Ker(fm+1) = Ker(fm) et par récurrence
Ker(fm+k) = Ker(fm) pour tout k ≥ 1.
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